菜单

高光谱遥感监测水稻缺水胁迫的各种建模方法的比较

来源:
时间: 2020-05-25

高光谱遥感监测水稻缺水胁迫的各种建模方法的比较

摘要:本研究旨在理解不同缺水胁迫下10个水稻基本型的表现。记录了不同胁迫水平下植物的相对含水量(RWC)以及在350-2500 nm范围内的高光谱数据。通过光谱指数,多元技术和神经网络技术确定最佳波段,并建立预测模型。建立了新的水敏感光谱指数,并就RWC评估了现有的水带光谱指数。这些基于指数的模型可以有效地预测RWCR2值为0.730.94。在350-2500 nm范围内的所有可能组合中,使用比率光谱指数(RSI)和归一化光谱指数(NDSI)绘制等高线,并量化与RWC的相关性以确定最佳指数。光谱反射率数据(ASD Field Spec3 spectroradiometer测量)还用于建立偏最小二乘回归(PLSR),然后进行多元线性回归(MLR)和人工神经网络(ANN),支持向量机回归(SVR)和随机森林(RF)模型来计算植物RWC。在这些多元模型中,PLSR-MLR被认为是预测RWC的最佳模型,校正和验证的R2分别为0.980.97,预测的均方根误差(RMSEP)为5.06。结果表明,PLSR是鉴定作物缺水胁迫的可靠技术。尽管PLSR是可靠的技术,但如果将PLSR提取的最佳波段馈入MLR,则结果会得到显着改善。使用所有光谱反射带建立了ANN模型。建立的模型未取得令人满意的结果。因此,使用PLSR选择的最佳波段作为独立x变量开发了模型,发现PLSR-ANN模型比单独的ANN模型更好。该研究成功地在各种建模方法之间进行了分析比较,以量化缺水胁迫。通过预测农作物的RWC,开发出的方法可通过预测农作物的RWC而更准确地识别缺水胁迫。

本研究的目标是:(1评估现有水带指数以及开发新的有效水带指数;(2)确定对作物的RWC敏感的最佳波段;(3使用多元技术和神经网络开发各种RWC预测模型,并彼此之间进行比较;(4评估PLSR-MLR模型以测试其功效是否优于仅通过PLS回归开发的模型。


缺水胁迫下光谱反射率的变化

通常,特定作物表现出相似的反射光谱。但是缺水胁迫带来了反射光谱的显著变化。该研究显示了不同缺水胁迫下植物的反射率模式。新鲜植物的反射率较低,而干燥植物的反射率较高。RWC降低,SWIR区域反射率反而增加,原因是1400 nm1900 nm处水吸收特征减弱。在350-700 nm波长区域观察到了类似的变化模式。蓝色和红色区域(叶绿素ab的吸收范围)中光谱显示出随着RWC降低,反射率增加。随着叶片的干燥,1400-1925 nm波长向较短波长移动,且光谱反射率增加。随着RWC的降低,1400-1500 nm1850-1900 nm处的吸收特征变浅。吸收率下降的原因是RWC降低而使水吸收特性减弱。在810-1350 nm的海绵状叶肉中的散射也反映出反射率随RWC降低而增加的类似趋势。此外,在中红外(1100-2500 nm)处的吸收也是一个强烈的吸收区域,随着RWC降低,叶片枯萎主要通过新鲜叶片中的水,其次是通过干物质(例如蛋白质,木质素和纤维素)而变得更加明显。

 

2显示了水稻叶片随相对含水量降低,其基因型的平均光谱反射率结果,显示了相对含水量的百分比以及不同时间间隔的响应光谱。

高光谱遥感监测水稻缺水胁迫的各种建模方法的比较

图8显示了从偏最小二乘回归模型中提取的潜在变量。光谱的波峰和波谷用于相对含水量预测的最佳波段。右下图显示了三个潜在变量的覆盖。


高光谱遥感监测水稻缺水胁迫的各种建模方法的比较

图13显示了使用校准和验证的R2RMSEP进行多元模型和神经网络模型的性能评估。


高光谱遥感监测水稻缺水胁迫的各种建模方法的比较

结论:这项研究成功地评估了基于指数,多元技术和神经网络的方法,准确地预测了水稻基因型缺水胁迫条件下的相对含水量(RWC)。评估了现有的水带指数,并提出了对水分胁迫敏感的新水带指数。发现MDWI是所有常规现有指数中最好的指数。新提出的指数优于所有其他指数。对于水稻作物的RWC的估算,MLR技术(PLSR-MLR模型)是最好的(产生高R2和低RMSEP),其次是通过PLSRANN技术开发的模型(PLSR-ANN模型)。因此,从这项研究中可以得出结论,及时发现缺水胁迫对于精准农业非常重要。通过这项研究开发的模型和指数可以有效地检测水分亏缺胁迫。使用高光谱反射率测量作物不同阶段的相对含水量(RWC)可以及时检测出水分亏缺胁迫。与基于地面的光谱辐射仪数据相比,高光谱成像可以提供大面积覆盖,并且将更加适合。研究区域无法获得高光谱图像,这限制了在区域尺度上评估缺水胁迫。在未来的研究中使用机载/卫星传播的高光谱数据可能会大大增强此类研究的实用性。为预测RWC而开发的方法可利用作物反射光谱更准确地识别缺水胁迫,并可用于开发抗旱品种。

高光谱遥感监测水稻缺水胁迫的各种建模方法的比较.pdf

相关推荐
Copyright ©2018-2023 北京理加联合科技有限公司 犀牛云提供企业云服务