菜单

华北和东北地区土地利用和气候变化对土壤有机碳的影响

来源:
时间: 2020-05-15


华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

土壤有机碳(SOC)源和汇之间的平衡会影响温室气体以及全球气候SOC储量的微小变化会影响碳循环,并可能显著增加或降低大气中的碳浓度。土壤碳的变化受气候和土地利用的影响,并且在不同土壤中也会发生变化。为了更好地理解土壤有机碳的动力学及其驱动因子,作者收集了华北和东北地区1980年代和2000年代的数据,其中2000年代的样品利用ASD Fieldspec ProFR vis–NIR光谱仪进行了漫反射光谱的测定用于土壤碳的预测,并对各个时期土壤有机碳的空间变化进行了数字土壤制图。在1980年代,在30公里的方格中采集了585个土壤样品,并在2003年和2004年对该区域进行了重新采样(1062个样品)。该地区土地利用类型主要是农田,森林和草地。土地利用,地形因素,植被指数,可见近红外光谱和气候因素作为预测因子,使用随机森林预测土壤有机碳浓度及其时间变化。1985年平均土壤有机碳浓度为10.0 g kg-1,而2004年为12.5 g kg-1。在这两个时期中,土壤有机碳变化相似且从南到北增加。据估计土壤有机碳储量在1985年为1.68 Pg,在2004年为1.66 Pg,但是不同土地利用下土壤有机碳变化是不同的。在过去的20年中,平均气温升高,大面积森林和草原转化为农田。农田土壤有机碳增加了0.094 Pg+9%),而森林和草地土壤有机碳分别损失了0.089 Pg−25%)和0.037 Pg−25%)。结论是,土地利用是该地区土壤有机碳变化的主要驱动力,而气候变化在不同地区的贡献则不同。在土地利用的转换下,土壤有机碳损失显著,而农田具有土壤有机碳封存的巨大潜力。


1 结果
1.1 土壤有机碳浓度
2004年样品的总SOC平均浓度为12.5 g kg-1,略高于1985年的SOC浓度(10.0 g kg-1)(2)。在1985年,各土地利用类型表现为农田8.3 g kg-1)<裸地10.0 g kg-1)<草地15.1 g kg-1)<沼泽16.0 g kg-1)<森林17.1 g kg-1)。在2004年表现为裸地11.1 g kg-1)<农田12.2g kg-1)<森林12.7g kg-1)<草地13.3g kg-1)<沼泽20.8 g kg-1)。随着时间的变化,农田,沼泽和裸地土壤的SOC增加了,而森林和草地降低了。1985年的土壤由于较高的标准偏差而显示出比2004年更高的变化(3)。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.2 土壤有机碳浓度空间模型
4总结了预测模型的校准和独立验证,其中1985年样品的校准LCCC0.910.90–0.92),2004年为0.971985年独立验证LCCC0.650.39-0.902004年为0.840.77-0.90)。在校准和验证水平,1985年的RMSEs均高于2004年。由于样品密度较高,LCCCRMSE较低,因此2004年的模型比1985年的模型更稳定。
2显示了环境协变量在1985年和2004年预测模型中的重要性。在这两个时期一些协变量重要性相似,例如坡度,TWIMBI,温度,降水和土地利用。植被和气候因素是重要的预测指标,尤其是温度,降水,NDVIVNDVI。坡向,曲率和MBI2004SOC预测的贡献不大,且坡向是两个时期中最不重要的因素。2004年土壤样品光谱的PCA在预测模型中表现出很高的重要性。从PC1PC3重要性依次降低。
华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.3 土壤碳的空间变化
3预测了1985年和20040-20 cm表土中SOC浓度。1985年研究区的SOC浓度从南到北增加。在南部,SOC浓度大部分在8g kg-1以下。中部海拔较高,其SOC浓度高于南部。在北部,SOC浓度随纬度显著增加。两个时期SOC的空间分布是相似的。在南半部,SOC浓度在810 g C kg-1之间,高于1985年。在北部,SOC浓度随纬度增加。
由于样品数量和地点的不同,两个时期的不确定性也有所不同(4)。北部地区预测不确定性最低。1985SOC预测的高度不确定性发生在海拔较高的中部和南部边缘。2004年的高度不确定性发生在样品密度较低的中北部地区。

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.4 土壤有机碳的变化
1985年至2004年之间,除农田外,所有土地利用的平均SOC浓度均下降。农是研究区最大的土地利用类型,其SOC浓度增加了0.5 g kg-14)。在森林土壤中,SOC减少量最大,为8.8 g kg-1-38%)。草地上的SOC浓度降低了21%。
研究发现,SOC浓度发生了显著变化,并且在初始浓度较高的地区,SOC的降低幅度更大。SOC的降低主要发生在研究区域的北部(中国东北)。减少量超过6 g kg-1 相反,初始SOC相对较低的南部地区(华北地区)SOC有所提高。
1985年和2004年土壤有机碳总储存量分别为1.68 Pg1.66 Pg。在不同的土地利用类型中,农田含有最多的有机碳,而森林和草地的有机碳含量远少于农田。二十年来森林土壤SOC损失了约25%(5),但农田土壤有机碳却增加了9%。草地土壤有机碳以25%速率增加了0.013 Pg

华北和东北地区土地利用和气候变化对土壤有机碳的影响

华北和东北地区土地利用和气候变化对土壤有机碳的影响

1.5 土地利用和气候变化对土壤有机碳变化的影响

在华北和东北地区,土地利用对SOC变化的贡献超过温度和降水变化(5)。在整个地区,对SOC变化的贡献中土地利用占38%,温度变化约占9%,而降水变化仅占5%。东北地区(42%)比华北地区(33%)的土地利用占比更大。整个研究区域,特别是东北和华北地区,温度变化对SOC均无显著影响。华北地区降水变化对SOC动态的影响很小(17%),而东北地区几乎没有影响。温度对东北地区的SOC变化没有显著影响,而华北地区占20%。华北地区气候变化对SOC变化的总贡献达到了35%,而土地利用为33%,但在总变化中共有19%的相互作用。
华北和东北地区土地利用和气候变化对土壤有机碳的影响
2 结论
研究估计了1985年至2004年之间0–20 cm表层土壤有机碳浓度和储存量的变化。数字土壤制图方法用随机森林模型中的环境协变量预测了两个时期SOC的空间变化。结果为:
(1) 随机森林可以在大尺度上有效地预测SOC空间变化。在这两个时期中,SOC浓度具有相似的趋势,东北地区的SOC较低,华北平原的SOC较高。华北地区土壤碳增加,而大多数东北地区则减少。
(2) SOC的总体储存量稳定。农田土壤中的碳储量增加0.094 Pg,增长率为9%。森林和草原土壤中发生显著的碳损失,均为-25%
(3) 在中国华北和东北地区,土地利用变化是SOC变化的主要驱动因子。与土地利用变化相比,气候变化对SOC变化的贡献相似,而东北地区的贡献较小。


Land use and climate change effects on soil organic carbon in North and Northeast China.pdf


相关推荐
Copyright ©2018-2023 北京理加联合科技有限公司 犀牛云提供企业云服务