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Abstract: Post-mining sites have a significant impact on surrounding ecosystems. Afforestation can
restore these ecosystems, but its success and speed depends on the properties of the excavated spoil
substrates. Thermal infrared remote sensing brings advantages to the mapping and classification
of spoil substrates, resulting in the determination of its properties. A library of spoil substrates
containing spectral emissivity and chemical properties can facilitate remote sensing activities. This
study presents spectral library of spoil substrates’ emissivities extracted from brown coal mining
sites in the Czech Republic. Extracted samples were homogenized by drying and sieving. Spectral
emissivity of each sample was determined by spectral smoothing algorithm applied to data measured
by a Fourier transform infrared (FTIR) spectrometer. A set of chemical parameters (pH, conductivity,
Na, K, Al, Fe, loss on ignition and polyphenol content) and toxicity were determined for each sample
as well. The spectral library presented in this paper also offers valuable information in the form of
geographical coordinates for the locations where samples were obtained. Presented data are unique in
nature and can serve many remote sensing activities in longwave infrared electromagnetic spectrum.

Data Set: available as a supplementary file, http://www.mdpi.com/2306-5729/1/2/12/s1

Data Set License: The data set is made available under a CC-BY license.
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1. Summary

Post-mining sites represent areas of large-scale and intensive disturbance. They can have
significant impacts on the surrounding landscape in many countries of the world. Original ecosystems
can be damaged or destroyed, and the restoration of ecosystem functions and services is necessary [1].
Afforestation is a widely used reclamation method. Many studies demonstrate that post-mining
sites have a large potential for carbon sequestration if afforestation has been applied [2–5]. This can
contribute to mitigating the current increase in atmospheric CO2 concentrations.

During opencast mining, a large amount of substrate above the coal layer is removed and relocated
in heaps covering extensive areas. These heaps consist of material often excavated from depths of
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several hundred meters. This material is called spoil substrate and it can vary in its physical and
chemical properties. The heterogeneity is largely affected by geology and the method of mining
and heaping. For this reason, the substrates differ substantially from recent soils. They often have
extreme pH and may contain high concentrations of heavy metals, polyphenols (i.e., products of coal
decomposition) and salt content. Such properties can significantly impact a success and/or speed
of vegetation development at post mining sites. Therefore, a proper knowledge of spoil substrate
properties and distribution is necessary in land rehabilitation.

Thermal infrared remote sensing can provide beneficial tools for monitoring of post-mining
areas. In particular, land surface emissivity (LSE) can be used for spoil substrates classification.
In addition, physical and chemical properties can be estimated by spectral analysis of LSE. Land
surface temperature (LST) is closely connected to soil moisture, which is important for establishment of
new ecosystems. All of this information is required when proper land reclamation should be applied.
This can include mainly substrate mechanical treatment, such as trenching in order to regulate water
regime, chemical treatment (e.g., liming), and selection of appropriate tree species.

LST is coupled with LSE and thus one quantity cannot be derived without knowledge of the
second. These quantities cannot be explicitly derived from radiance measurement. The reason is that
by observing radiance in N bands one gets N unknown emissivities plus one unknown temperature.
Such a system of equations is underdetermined (i.e., more unknown than known variables). Several
algorithms have been suggested to solve this problem [6]. These algorithms either require knowledge
of LSE in advance, or an estimate LSE as a part of their output. A library of spectral emissivities can be
utilized for: (1) determination of LST; (2) material classification; and (3) LSE validation of airborne and
satellite thermal remote sensing data.

This work describes a spectral library of spoil substrate emissivities from brown coal mining
sites in the Czech Republic near towns of Sokolov, Chodov, Bílina and Ustí nad Labem (Figure 1).
The spectral library contains emissivities, soil pH in water and in KCl, soil conductivity, content of
water soluble Na and K, Al and Fe in KCl, loss on ignition and content of polyphenols. In addition
to all measured physical and chemical parameters, the sample’s latitude and longitude are listed.
The dataset consists of 24 spoil substrate samples, which were homogenized by mixing and sieving
before any sample analysis. The toxicity test and measurement of chemical properties are discussed at
length in [7]. Data collection for emissivity retrievals was performed outdoors in Petri dishes using
a Fourier transform infrared (FTIR) spectrometer Model 102 (D and P Instruments, United States).
The emissivity of each sample was estimated by a spectral smoothing algorithm [8].
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(SLUM) [13]. However, these spectral libraries do not include neither geographical coordinates of
samples nor representatives of spoil substrates. One example of a spectral library of emissivities from
calibration/validation sites containing coordinates for each sample is described in [14]. The dataset
described in this paper is exceptional in its nature and location.

The data presented in this paper were used in a study focused on mapping of spoil substrates for
site re-cultivation [15] as well as in a study discussing spoil substrates toxicity [7]. The mining site
was also mapped with the Airborne Hyperspectral Scanner (AHS) in visible, near infrared, shortwave
infrared and longwave infrared regions for mineral classification purposes [16]. Examples of emissivity
spectra retrieved from AHS and their corresponding sample spectra extracted from the library are
depicted in Figure 2. Sample spectra from the library were spectrally resampled with respect to AHS
response functions using weighted averages [1]. Comparison of retrieved spectra in case of samples 11
and 19 shows good agreement in shape. Sample 12 exhibits deviations mainly between bands 3 and 4
(9.24 and 9.68 µm). This can be explained by the fact that AHS pixel has 5 × 5 m pixel size and
these pixels were not pure thus had more complex mineral composition than the collected samples.
Discrepancies in magnitude can be addressed to imperfect atmospheric corrections or to different soil
states during overflight.

Data 2016, 1, 12  3 of 7 

calibration/validation sites containing coordinates for each sample is described in [14]. The dataset 
described in this paper is exceptional in its nature and location. 

The data presented in this paper were used in a study focused on mapping of spoil substrates 
for site re-cultivation [15] as well as in a study discussing spoil substrates toxicity [7]. The mining site 
was also mapped with the Airborne Hyperspectral Scanner (AHS) in visible, near infrared, shortwave 
infrared and longwave infrared regions for mineral classification purposes [16]. Examples of 
emissivity spectra retrieved from AHS and their corresponding sample spectra extracted from the 
library are depicted in Figure 2. Sample spectra from the library were spectrally resampled with 
respect to AHS response functions using weighted averages [1]. Comparison of retrieved spectra in 
case of samples 11 and 19 shows good agreement in shape. Sample 12 exhibits deviations mainly 
between bands 3 and 4 (9.24 and 9.68 µm). This can be explained by the fact that AHS pixel has 5 × 5 
m pixel size and these pixels were not pure thus had more complex mineral composition than the 
collected samples. Discrepancies in magnitude can be addressed to imperfect atmospheric corrections 
or to different soil states during overflight. 

 

Figure 2. Examples of corresponding emissivity spectra retrieved from Airborne Hyperspectral 
Scanner (AHS) and from spectral library of spoil substrates’. Emissivity spectra from the library were 
measured by Fourier transform infrared (FTIR) and they were resampled with respect to AHS 
response functions. 

Any activity involving remote sensing over these mining sites can benefit from publicly 
releasing the spectral library of spoil substrates emissivity. Apart from remote sensing application, 
data in the spectral library can be further analyzed for identifying relationships between a sample’s 
spectral emissivity and its chemical properties. 

2. Data Description 

The spectral library consists of 24 ASCII files. Each file describes one spoil substrate. Individual 
files are named according to the sample number. Files consist of a file header and spectral 
emissivities. Both file parts are described in the subsections below. 

2.1. Header 

The format of the header is similar to the format of the ASTER Spectral Library header [9]. Each 
file contains 26 lines of header, which includes available sample information. The header is divided 
into four sections separated by empty lines. First part contains 9 lines discussing sample classification, 
particle size and sample origin. Sample origin is expressed by latitude and longitude on the reference 
ellipsoid WGS84. This information is summarized in the following fields: 

1. Name 
2. Type 
3. Class 
4. Particle size 

Figure 2. Examples of corresponding emissivity spectra retrieved from Airborne Hyperspectral Scanner
(AHS) and from spectral library of spoil substrates’. Emissivity spectra from the library were measured
by Fourier transform infrared (FTIR) and they were resampled with respect to AHS response functions.

Any activity involving remote sensing over these mining sites can benefit from publicly releasing
the spectral library of spoil substrates emissivity. Apart from remote sensing application, data in
the spectral library can be further analyzed for identifying relationships between a sample’s spectral
emissivity and its chemical properties.

2. Data Description

The spectral library consists of 24 ASCII files. Each file describes one spoil substrate. Individual
files are named according to the sample number. Files consist of a file header and spectral emissivities.
Both file parts are described in the subsections below.

2.1. Header

The format of the header is similar to the format of the ASTER Spectral Library header [9]. Each
file contains 26 lines of header, which includes available sample information. The header is divided
into four sections separated by empty lines. First part contains 9 lines discussing sample classification,
particle size and sample origin. Sample origin is expressed by latitude and longitude on the reference
ellipsoid WGS84. This information is summarized in the following fields:

1. Name
2. Type



Data 2016, 1, 12 4 of 7

3. Class
4. Particle size
5. Sample No
6. Owner
7. Origin
8. Latitude
9. Longitude

A second section contains information about sample toxicity and chemical properties. The unit
of each quantity is indicated in square brackets after quantity name. This header section contains
following fields:

11. toxicity
12. pH in H2O
13. pH in KCl
14. conductivity
15. water soluble Na
16. water soluble K
17. Al in KCl
18. Fe in KCl
19. loss on ignition
20. polyphenol content

A third section contains reference to [7], which discusses toxicity measurement and chemical
analysis. Finally, the fourth header section contains the names of two columns, in which the following
spectral emissivity data are aligned. Metadata in each header line contains an attribute name followed
by a colon (ASCII Character 3A) and tab (ASCII Character 09) and then the corresponding value.

2.2. Spectral Emissivity

After the header part, the file continues on lines 27–213 with spectral emissivity data aligned in
two columns. As header file indicates, the first column contains wavelength in micrometers and the
second column contains corresponding emissivity value. Values in each row are separated by tab.
The emissivity of each sample is provided in wavelengths interval from 8 µm to 14 µm. Sampling in
this interval is non-linear.

3. Methods

The study area is situated around two post mining districts: (1) Sokolov—coal-mining district
near towns of Sokolov and Chodov (North-West Czech Republic) and (2) North Czech coal mining
district near towns of Bílina and Ustí nad Labem (North Czech Republic). Open-pit mines produce
large areas of tailings where spoil material was sampled. Claylike tertiary sediments dominate in
these districts.

Spoil substrates were sampled from bare soil without vegetation. Samples contained negligible
amounts of organic matter. Extracted samples were further homogenized by mixing and sieving
trough a 2 mm screen. Homogenized samples were divided into two groups, from which the first
one was used for chemical analysis and the second one for toxicity testing. Samples set for chemical
analysis were air dried and stored in a dark place at room temperature. Soil pH in water and in 1N KCl
(which is 74.56 g of potassium chloride diluted in 1000 mL of water [17]) was measured using a pH
meter with glass electrode in suspension. The suspension was prepared in 1:5 spoil to water ratio
and 1:5 spoil to KCl ratio. Conductivity was measured in filtrated suspension using a conductometer.
The suspension was prepared in 1:5 spoil to water ratio. Content of water soluble Na and K was also
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measured in filtrated water suspension (1:5 spoil to water ratio) using an ion selective electrode. Both
suspensions were left to stay overnight. Al and Fe contents in 1N KCl eluate, (1:5 spoil to water ratio),
were determined by spectrophotometer Spectra AA 640 (Varian, Australia). Loss on ignition was
measured by burning spoil samples at 600 ◦C for 5 h. This process is called ashing. To determine the
amount of polyphenols, samples were kept in 80% ethanol (1:5 spoil to ethanol ratio) and stayed for
24 h. Samples were then filtrated and the polyphenol content was determined spectrophotometrically
by Folin–Ciocalteau reagent at a wavelength of 765 nm [18]. Gallic acid was used as a standard for
calibration. The polyphenol content was expressed as mg/100 g of soil. Toxicity was determined
by enchytraeid toxicity test. The test is based on the population growth of pot worms in substrates.
The details of the measurement are discussed in [7].

Spoil substrate emissivity measurements were collected with Designs and Prototypes Model 102
(United States) portable FTIR spectrometer. The measurements were performed outdoors under clear
sky conditions during two consecutive days in the summer season. The spectrometer was pre-heated
to maximum expected ambient day temperature during the nights before both measurement days.
The samples were positioned on the south side of the spectrometer to avoid shadows. The fore-optic
field-of-view was 4.8◦ and was 60 cm from the sample. Such a configuration resulted in a spot size of
approximately 5 cm. Samples were put in a 14-cm diameter Petri dish and were allowed to heat up
naturally in the sunlight. Sample temperatures ranged from 40 to 50 ◦C. Every sample was measured
at three different spots. The measurement of one spot consisted of ten measurements, which were
averaged. The resulting emissivity of each sample is the average of all three measurements. Sample
temperature and emissivity were determined by a spectral smoothing algorithm, as described in [8].

During the measurements the instrument was calibrated using two blackbodies at different
temperatures. A cold blackbody was set to the ambient temperature (30 ◦C) and warm blackbody was
set just above the sample temperature (40–50 ◦C). The calibration procedure during the first four spoil
samples was done between the changing of each sample. The calibration procedure during the rest
of the measurements was done between every fourth sample. Before every sample a measurement
was made of a diffuse gold reflectance plate (Infragold from Labsphere Inc., North Sutton, NH, USA),
to compensate for downwelling radiance, as suggested in [19]. The measurement of one sample along
with instrument calibration and measurement of the diffuse gold reflectance plate took around 15 min.
A description of the procedures for converting instrument response to radiance and compensating for
downwelling radiance can be found in [8,20].

Some of the spoil substrate emissivity spectra are greater than one at certain wavelengths. This
inaccuracy occurs at both ends of provided wavelengths interval (i.e., near 8 µm and near 14 µm). Data
at these wavelengths are on the edge of atmospheric window and thus the cause of the inaccuracy is
imperfect compensation for downwelling radiance. Samples with numbers 33, 34 and 38 are missing
header information of latitude and longitude. Absent values are indicated by ‘NA’ string. In these
cases, the origin of the sample is specified with respect to the closest town (either Bílina or Sokolov).
We still find these data meaningful, since they can be used as spectral endmembers.

4. Usage Notes

All of the samples contain varying amounts and types of clay minerals, as evidenced by their
spectral emissivity features. Figure 3 depicts three examples of spoil samples taken from the spectral
library. These spectra can be compared with spectra of similar materials extracted from Arizona State
University Spectral Library [11] and ASTER Spectral Library [9], which are illustrated in the Figure 3 as
well. Sample 02 (Figure 3a) is clay consisting mostly of kaolinite with significant dips at 8.90, 9.44, 9.90
and 11.00 µm. Sample 06 (Figure 3b) is coal combined with sand and clay. The emissivity spectrum of
this sample contains kaolinite features mixed with a quartz features at 8.47 and 8.83 µm. The sample 33
(Figure 3c) is bentonite rich in montmorillonite. Montmorillonite has a typical dip in spectral emissivity
at 9.43 µm. The spectral emissivity library of spoil substrates includes also image providing a preview
of all samples in library similar to images shown in Figure 3.
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